Constrained Pseudorandom Functions for Unconstrained Inputs

نویسندگان

  • Apoorvaa Deshpande
  • Venkata Koppula
  • Brent Waters
چکیده

A constrained pseudo random function (PRF) behaves like a standard PRF, but with the added feature that the (master) secret key holder, having secret key K, can produce a constrained key, K{f}, that allows for the evaluation of the PRF on all inputs satisfied by the constraint f . Most existing constrained PRF constructions can handle only bounded length inputs. In a recent work, Abusalah et al. [AFP14] constructed a constrained PRF scheme where constraints can be represented as Turing machines with unbounded inputs. Their proof of security, however, requires risky “knowledge type” assumptions such as (public coins) differing inputs obfuscation for circuits and SNARKs. In this work, we construct a constrained PRF scheme for Turing machines with unbounded inputs under weaker assumptions, namely, the existence of indistinguishability obfuscation for circuits (and DDH). ∗This work was done while the author was visiting the Simons Institute for the Theory of Computing, supported by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography through NSF grant #CNS-1523467. †Supported by NSF CNS-0952692, CNS-1228599 and CNS-1414082. DARPA through the U.S. Office of Naval Research under Contract N00014-11-1-0382, Google Faculty Research award, the Alfred P. Sloan Fellowship, Microsoft Faculty Fellowship, and Packard Foundation Fellowship.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Verifiable and Delegatable Constrained Pseudorandom Functions for Unconstrained Inputs

Constrained pseudorandom functions (CPRF) are a fundamental extension of the notion of traditional pseudorandom functions (PRF). A CPRF enables a master PRF key holder to issue constrained keys corresponding to specific constraint predicates over the input domain. A constrained key can be used to evaluate the PRF only on those inputs which are accepted by the associated constraint predicate. Ho...

متن کامل

Constraining Pseudorandom Functions Privately

In a constrained pseudorandom function (PRF), the master secret key can be used to derive constrained keys, where each constrained key k is constrained with respect to some Boolean circuit C. A constrained key k can be used to evaluate the PRF on all inputs x for which C(x) = 1. In almost all existing constrained PRF constructions, the constrained key k reveals its constraint C. In this paper w...

متن کامل

Adaptive Security of Constrained PRFs

Constrained pseudorandom functions have recently been introduced independently by Boneh and Waters (Asiacrypt’13), Kiayias et al. (CCS’13), and Boyle et al. (PKC’14). In a standard pseudorandom function (PRF) a key K is used to evaluate the PRF on all inputs in the domain. Constrained PRFs additionally offer the functionality to delegate “constrained” keys KS which allow to evaluate the PRF onl...

متن کامل

Constrained PRFs for Unbounded Inputs with Short Keys

A constrained pseudorandom function (CPRF) F : K×X → Y for a family T of subsets of X is a function where for any key k ∈ K and set S ∈ T one can efficiently compute a short constrained key kS , which allows to evaluate F (k, ·) on all inputs x ∈ S; while the outputs on all inputs x / ∈ S look random even given kS . Abusalah et al. recently constructed the first constrained PRF for inputs of ar...

متن کامل

Fully secure constrained pseudorandom functions using random oracles

A constrained pseudorandom function (CPRF) PRF allows to derive constrained evaluation keys that only allow to evaluate PRF on a subset of inputs. CPRFs have only recently been introduced independently by three groups of researchers. However, somewhat curiously, all of them could only achieve a comparatively weak, selective-challenge form of security (except for small input spaces, very limited...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016